NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The effect of gravity on the combustion synthesis of Ni-Al and Ni3Al-TiB2 composites from elementsPrevious studies on the combustion synthesis of advanced materials indicate that combustion and structure formation mechanisms involve several stages including melting of reactants and products, spreading of the melt, droplet coalescence, diffusion and convection, buoyancy of solid particles, and densification of the liquid product. Most of these processes are affected by gravity. Conducting the combustion synthesis under microgravity conditions is expected to help elucidate the reaction mechanisms. Two systems were examined. The first involves Ni/AI cladded particles, which is an ideal system to examine the individual particle and liquid flow before combustion occurs. For comparison, elemental Ni and Al powders with the same stoichiometry as that of the cladded particles were also used in some experiments. The second system was the Ni3AITiB2 composite in which the Ni3AI (-delta H(sub f) = 153.1 kJ/mol) phase melts during reaction enabling us to examine settling of the liquid phase. The amount of liquid phase was controlled by varying the TiB2 (-delta H(sub f) = 323.8 kJ/mol) content which generates the additional heat. The overall reactions for the two systems can be expressed as follows. System 1: 4Ni + 2AI yields Ni3AI + NiA and System 2: 3Ni + Al + x (Ti + 2B) yields Ni3Al + x(TiB2). For the first system, pellets were pressed directly from the cladded particles, at green densities about 77 +/- 3% of theoretical value. For the second, the pellets were prepared by mixing the elemental reactant powders in the required stoichiometry by ball-milling and then pressing uniaxially at green densities about 70 +/- 3 percent of theoretical. The pellets were cylindrical in shape, 10 mm in diameter and length typically 20-30 mm. The pellet samples were reacted in UHP Argon (1 atm) using the experimental setup and procedure described previously. After reaction, the samples were sectioned axially in order to conduct the microstructural analysis in the longitudinal direction. The phase composition of the reacted product was determined by X-ray diffraction (XRD) and the microstructure was analyzed using scanning electron microscopy (SEM) along with energy dispersive X-ray spectrometry (EDX).
Document ID
19960008414
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Varma, Arvind
(Notre Dame Univ. IN, United States)
Yi, Hu Chun
(Notre Dame Univ. IN, United States)
Mcginn, Paul J.
(Notre Dame Univ. IN, United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1995
Publication Information
Publication: NASA. Lewis Research Center, The 3rd International Microgravity Combustion Workshop
Subject Category
Materials Processing
Accession Number
96N15580
Funding Number(s)
CONTRACT_GRANT: NAG3-1644
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available