NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The application of spaceborne GPS to atmospheric limb sounding and global change monitoringThis monograph is intended for readers with minimal background in radio science who seek a relatively comprehensive treatment of the mission and technical aspects of an Earth-orbiting radio occultation satellite. Part 1 (chapters 1-6) describes mission concepts and programmatic information; Part 2 (chapters 7-12) deals with the theoretical aspects of analyzing and interpreting radio occultation measurements. In this mission concept the navigation signals from a Global Positioning System (GPS) satellite that is being occulted by the Earth's limb are observed by a GPS flight receiver on board a low Earth orbiter (LEO) satellite. This technique can be used to recover profiles of the Earth's atmospheric refractivity, pressure, and temperature using small, dedicated, and relatively low-cost space systems. Chapter 2 summarizes the basic space system concepts of the limb-sounding technique and describes a low-cost strawman demonstration mission. Chapter 3 discusses some of the scientific benefits of using radio occultation on a suite of small satellites. Chapter 4 provides a more detailed discussion of several system elements in a radio occultation mission, including the launch system for small payloads, the LEO microsat, the GPS constellation, the GPS flight receiver payload, the mission operations ground control and data receiving system, the ground-based GPS global tracking network for precision orbit determination, and the central data processing and archive system. Chapter 5 addresses the various technology readiness questions that invariably arise. Chapter 6 discusses the overall costs of a demonstration mission such as GPS/MET (meteorological) proposed by the University Navstar Consortium (UNAVCO). Chapter 7 describes a geometrical optics approach to coplanar atmospheric occultation. Chapter 8 addresses major questions regarding accuracy of the occultation techniques. Chapter 9 describes some simulations that have been performed to evaluate the sensitivity of the recovered profiles of atmospheric parameters to different error sources, such as departure from spherical symmetry, water vapor, etc. Chapter 10 discusses horizontal and vertical resolution associated with limb sounders in general. Chapter 11 treats selected Fresnel diffraction techniques that can be used in radio occultation measurements to sharpen resolution. Chapter 12 provides brief discussions on selected special topics, such as strategies for handling interference and multipath processes that may arise for rays traveling in the lower troposphere.
Document ID
19960008694
Acquisition Source
Legacy CDMS
Document Type
Contractor Report (CR)
Authors
Melbourne, W. G.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Davis, E. S.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Duncan, C. B.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Hajj, G. A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Hardy, K. R.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Kursinski, E. R.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Meehan, T. K.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Young, L. E.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Yunck, T. P.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
September 6, 2013
Publication Date
June 16, 1994
Subject Category
Aircraft Communications And Navigation
Report/Patent Number
NASA-CR-199799
JPL-PUBL-94-18
NIPS-95-06497
NAS 1.26:199799
Accession Number
96N15860
Funding Number(s)
CONTRACT_GRANT: NAS7-1260
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available