NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Helicity fluctuations and turbulent energy production in rotating and non-rotating pipesFinite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production.
Document ID
19960022310
Acquisition Source
Ames Research Center
Document Type
Other
Authors
Orlandi, P.
(Rome Univ. Rome, Italy)
Date Acquired
September 6, 2013
Publication Date
December 1, 1995
Publication Information
Publication: Center for Turbulence Research Annual Research Briefs: 1995
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
96N25331
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available