NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aerodynamic sound of flow past an airfoilThe long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord Reynolds number of 104. The far-field noise is computed using Curle's extension to the Lighthill analogy (Curle 1955). An effective method for separating the physical noise source from spurious boundary contributions is developed. This allows an accurate evaluation of the Reynolds stress volume quadrupoles, in addition to the more readily computable surface dipoles due to the unsteady lift and drag. The effect of noncompact source distribution on the far-field sound is assessed using an efficient integration scheme for the Curle integral, with full account of retarded-time variations. The numerical results confirm in quantitative terms that the far-field sound is dominated by the surface pressure dipoles at low Mach number. The techniques developed are applicable to a wide range of flows, including jets and mixing layers, where the Reynolds stress quadrupoles play a prominent or even dominant role in the overall sound generation.
Document ID
19960022316
Acquisition Source
Ames Research Center
Document Type
Other
Authors
Wang, Meng
(Stanford Univ. CA United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1995
Publication Information
Publication: Annual Research Briefs: 1995
Subject Category
Acoustics
Accession Number
96N25337
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available