NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Robotic vision techniques for space operationsAutomation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.
Document ID
19960022618
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Krishen, Kumar
(NASA Johnson Space Center Houston, TX United States)
Date Acquired
August 17, 2013
Publication Date
May 1, 1994
Publication Information
Publication: Dual-Use Space Technology Transfer Conference and Exhibition, Volume 2
Subject Category
Cybernetics
Accession Number
96N25562
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available