NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Optical amplifiers for coherent lidarWe examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical amplifiers in well optimized conventional lidar systems offers modest improvements, at best, (2) the practical advantages of optical amplifiers, especially fiber amplifiers, such as ease of alignment, compactness, efficiency, lightweight, etc., warrant further investigation for coherent lidar, (3) the possibility of more fully optical lidar systems should be explored, (4) advantages gained by use of coherent interference of optical fields at the level of one, or a few, signal quanta should be explored, (5) amplification without inversion, population trapping, and use of electromagnetic induced transparency warrant investigation in connection with coherent lidar, (6) these new findings are probably more applicable to earth related NASA work, although applications to deep space should not be excluded, and (7) our own work in the Ultrafast Laboratory at UAH along some of the above lines of investigation, may be useful.
Document ID
19960025431
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Fork, Richard
(Alabama Univ. Huntsville, AL United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1996
Publication Information
Publication: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program
Subject Category
Optics
Accession Number
96N27468
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available