NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Orbital debris removal using ground-based lasersOrbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.
Document ID
19960025476
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Taylor, Charles R.
(Pacific Univ. Forest Grove, OR United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1996
Publication Information
Publication: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program
Subject Category
Spacecraft Design, Testing And Performance
Accession Number
96N27513
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available