NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
LCTV Holographic ImagingAstronauts are required to interface with complex systems that require sophisticated displays to communicate effectively. Lightweight, head-mounted real-time displays that present holographic images for comfortable viewing may be the ideal solution. We describe an implementation of a liquid crystal television (LCTV) as a spatial light modulator (SLM) for the display of holograms. The implementation required the solution of a complex set of problems. These include field calculations, determination of the LCTV-SLM complex transmittance characteristics and a precise knowledge of the signal mapping between the LCTV and frame grabbing board that controls it. Realizing the hologram is further complicated by the coupling that occurs between the phase and amplitude in the LCTV transmittance. A single drive signal (a gray level signal from a framegrabber) determines both amplitude and phase. Since they are not independently controllable (as is true in the ideal SLM) one must deal with the problem of optimizing (in some sense) the hologram based on this constraint. Solutions for the above problems have been found. An algorithm has been for field calculations that uses an efficient outer product formulation. Juday's MEDOF 7 (Minimum Euclidean Distance Optimal Filter) algorithm used for originally for filter calculations has been successfully adapted to handle metrics appropriate for holography. This has solved the problem of optimizing the hologram to the constraints imposed by coupling. Two laboratory methods have been developed for determining an accurate mapping of framegrabber pixels to LCTV pixels. A friendly software system has been developed that integrates the hologram calculation and realization process using a simple set of instructions. The computer code and all the laboratory measurement techniques determining SLM parameters have been proven with the production of a high quality test image.
Document ID
19960050292
Acquisition Source
Johnson Space Center
Document Type
Conference Paper
Authors
Knopp, Jerome
(Missouri Univ. Columbia, MO United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1996
Publication Information
Publication: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995
Volume: 1
Subject Category
Instrumentation And Photography
Accession Number
96N34377
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available