NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Chemical Characteristics of Continental Outflow Over the Tropical South Atlantic Ocean from Brazil and AfricaThe chemical characteristics of air parcels over the tropical South Atlantic during September - October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3CL and minimal enhancements of C2CL40, and various ChloroFluoroCarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NO(x) were significantly enhanced (up to approx. 1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NO(x) were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO(x) to the upper troposphere. Methane exhibited a monotonic increase with altitude from approx. 1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH, contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4 and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large-scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long-lived species over this region. The common occurrence of values greater than 1 for the ratio CH3OOH/H2O2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H2O2, HNO3, HCOOH, and CH3COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude.
Document ID
19980021260
Acquisition Source
Ames Research Center
Document Type
Contractor Report (CR)
External Source(s)
Authors
Talbot, R. W.
(New Hampshire Univ. Durham, NH United States)
Bradshaw, J. D.
(Georgia Inst. of Tech. Atlanta, GA United States)
Sandholm, S. T.
(Georgia Inst. of Tech. Atlanta, GA United States)
Smyth, S.
(Georgia Inst. of Tech. Atlanta, GA United States)
Blake, D. R.
(California Univ. Irvine, CA United States)
Blake, N. R.
(California Univ. Irvine, CA United States)
Sachse, G. W.
(NASA Langley Research Center Hampton, VA United States)
Collins, J. E.
(Lockheed Engineering and Sciences Co. Hampton, VA United States)
Heikes, B. G.
(Rhode Island Univ. Narragansett, RI United States)
Anderson, B. E.
(NASA Langley Research Center Hampton, VA United States)
Gregory, G. L.
(NASA Langley Research Center Hampton, VA United States)
Singh, H. B.
(NASA Ames Research Center Moffett Field, CA United States)
Lefer, B. L.
(New Hampshire Univ. Durham, NH United States)
Bachmeier, A. S.
(Lockheed Engineering and Sciences Co. Hampton, VA United States)
Date Acquired
September 6, 2013
Publication Date
October 30, 1996
Publication Information
Publication: Journal of Geophysical Research
Publisher: American Geophysical Union
Volume: 101
Issue: D19
ISSN: 0148-0227
Subject Category
Environment Pollution
Report/Patent Number
NAS 1.26:207359
Paper-95JDO3630
NASA/CR-96-207359
Funding Number(s)
CONTRACT_GRANT: NAG1-1233
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available