NTRS - NASA Technical Reports Server

Back to Results
The NASA Low-Pressure Turbine Flow Physics ProgramAn overview of the NASA Lewis Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The program was established in response to the aero-engine industry's need for improved LPT efficiency and designs. Modern jet engines have four to seven LPT stages, significantly contributing to engine weight. In addition, there is a significant efficiency degradation between takeoff and cruise conditions, of up to 2 points. Reducing the weight and part count of the LPT and minimizing the efficiency degradation will translate into fuel savings. Accurate prediction methods of LPT flows and losses are needed to accomplish those improvements. The flow in LPT passages is at low Reynolds number, and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The affecting parameters traditionally considered are Reynolds number, freestream turbulence intensity, wake frequency parameter, and the pressure distribution (loading). Three-dimensional effects and additional parameters, particularly turbulence characteristics like length scales, spectra and other statistics, as well as wake turbulence intensity and properties also play a role. The flow of most interest is on the suction surface, where large losses are generated as the flow tends to separate at the low Reynolds numbers. Ignoring wakes, a common flow scenario, there is laminar separation, followed by transition on the separation bubble and turbulent reattachment. If transition starts earlier the separation will be eliminated and the boundary layer will be attached leading to the well known bypass transition issues. In contrast, transition over a separation bubble is closer to free shear layer transition and was not investigated as well, particularly in the turbine environment. Unsteadiness created by wakes complicates the picture. Wakes induce earlier transition, and the calmed regions trailing the induced turbulent spots can delay or eliminate separation via shear stress modification. Three-dimensional flow physics and geometry will have strong effects. Altogether a very complex and challenging problem emerges. The objective of the program is to provide improved models and physical understanding of the complex flow, which are essential for accurate prediction of flow and losses in the LPT. Experimental, computational and analytical work as complementing and augmenting approaches are used. The program involves industry, universities and research institutes, and other government laboratories. It is characterized by strong interaction among participants, quick dissemination of results, and responsiveness to industry's needs. The presentation will describe the work elements. Highlighting some activities in progress are experiments on simulated blade suction surface in low-speed wind tunnels, on curved wall, and on a flat-plate, both with pressure gradient. In the area of computation, assessment of existing models is performed using RANS (Reynolds Averaged Navier Stokes) simulations. Laminar flow DNS was completed. Analytical studies of instability and receptivity in attached and separated flows were started. In the near future the program is moving to include wake effects and development of improved modeling. Experimental work in preparation stages are: (1) Addition of wakes to the curved tunnel experiment; (2) Low-speed rotating rig experiment on GE90 engine LPT; and (3) Transonic cascade. In the area of computation, it is expected to move from model assessment towards development of improved models. In addition, a new project of Large Eddy Simulation (LES) of LPT is to begin and will provide numerical data bases. It is planned to implement the emerging improved models in a multistage turbomachinery code and to validate against the GE90 engine LPT.
Document ID
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Ashpis, David E.
(NASA Lewis Research Center Cleveland, OH United States)
Date Acquired
August 18, 2013
Publication Date
June 1, 1998
Publication Information
Publication: Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
Subject Category
Fluid Mechanics And Heat Transfer
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available