NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Laser pointing determination for the geoscience laser altimeter systemThe Geoscience Laser Altimeter System (GLAS) is a space-based lidar being developed to monitor changes in the mass balance of the Earth's polar ice sheets (Thomas et al. 1985). GLAS is part of NASA's Earth Observing System (Schutz 1995), and is being designed to launch into a 600 km circular polar orbit in the year 2001, for continuous operation over 3 to 5 years. The orbit's 94 degree inclination has been selected to allow good coverage and profile patterns over the ice sheets of Greenland and Antarctica. The GLAS mission uses a small dedicated spacecraft provided by Ball Aerospace, which is required to have a very stable nadir and zenith pointing platform which points to within approximately 100 urad (20 arcseconds) of Nadir. Accurate knowledge of the laser beam's pointing angle (in the far field) is critical since pointing the laser beam away from nadir biases the altimetry measurements (Gardner 1992, Bufton et al. 1991). This error is a function of the distance of the laser centroid off nadir multiplied by the orbit altitude and the tangent of the slope angle of the terrain. Most of the ice sheet surface slopes are less than 1? resulting in pointing knowledge bias of only 7.6 cm with 7.3 urad accuracy, and overall single shot height accuracy of approximately 15 cm. However, over a 3 deg surface slope pointing knowledge to approximately 7.3 urad is the largest error source (23 cm) in achieving 26 cm height accuracy. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field to an accuracy of 7.3 urad. The stellar reference system combines an attitude determination system (ADS) operating from 4 to 10 Hz coupled to a 40 Hz laser reference system (LRS) to perform this task.
Document ID
19980227625
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Miller, Pamela S.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Sirota, J. Marcos
(Maryland Univ. Baltimore County Catonsville, MD United States)
Date Acquired
August 18, 2013
Publication Date
July 1, 1998
Publication Information
Publication: Nineteenth International Laser Radar Conference
Subject Category
Instrumentation And Photography
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available