NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust PlumesSimulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies (that employed parabolic or temporal approximations) and the measured data. Finally to address the major uncertainty in the near-field plume modeling related to the plume processing of sulfur compounds and advanced model was developed to evaluate its impact on the chemical processes in the near wake. A comprehensive aerosol model is developed and it is coupled with chemical kinetics and the axisymmetric turbulent jet flow models. The integrated model is used to simulate microphysical processes in the near-field jet plume, including sulfuric acid and water binary homogeneous nucleation, coagulation, non-equilibrium heteromolecular condensation, and sulfur-induced soot activation. The formation and evolution of aerosols are computed and analyzed. The computed results show that a large number of ultra-fine (0.3--0.6 nm in radius) volatile HSO4 - HO embryos are generated in the near-field plume. These embryos further grow in size by self coagulation and condensation. Soot particles can be activated by both heterogeneous nucleation and scavenging of H2SO4-H2O aerosols. These activated soot particles can serve as water condensation nuclei for contrail formation. Conditions under which ice contrails can form behind aircrafts are studied. The sensitivities of the threshold temperature for contrail formation with respect to aircraft propulsion efficiency, relative humidity, and ambient pressure are evaluated. The computed aerosol properties for different extent of fuel sulfur conversion to S(VI) (SO3 and H2SO4) in engine are examined and the results are found to be sensitive to this conversion fraction.
Document ID
19980232664
Acquisition Source
Langley Research Center
Document Type
Other
Authors
Menon, Suresh
(Georgia Inst. of Tech. Atlanta, GA United States)
Date Acquired
September 6, 2013
Publication Date
October 10, 1998
Subject Category
Environment Pollution
Funding Number(s)
CONTRACT_GRANT: NAG1-1631
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available