NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Heat Transfer from Cylinders in Transition From Slip Flow to Free-Molecule FlowOver 600 measured heat-transfer coefficients in the transition from slip to free-molecule flow have been correlated by using the Nusselt number Nu as a function of the Knudsen Kn and Reynolds Re (or Mach M) numbers. The experimental range for these heat-transfer data from transverse cylinders in air corresponds to the following dimensionless groups: M, 0.10 to 0.90; Re, 0.03 to 11.5; Kn, 0.10 to 5.0. The total air temperature T(sub t) was maintained constant at 80 F, but wire temperature was Varied from 150 to 580 F. At Kn=0.10, Nu extrapolates smoothly into slip-flow empirical curves that show Nu as a function of Re and M or Kn. The correlation gradually changes from the square root of Re(sub t) dependence characteristic of continuum flow to first-power Re dependence as Kn increases (decreasing Re). At the experimental limit Kn ft 5.0, the Nu data correlate with a mean fractional error of 413 percent by the prediction of free-molecule-flow theory. In comparing experimental results with theory, an accommodation coefficient of 0.57+/-0.07 was inferred from the heat-transfer data, which were obtained with etched tungsten wire in air. The wire recovery temperature T(sub e) was measured and compared with existing data and theory in terms of a ratio eta(equivalent to T(sub e)/T(sub t). The results can be divided into three groups by Kn criteria: For Kn less than 2.01, eta is independent of Kn, and eta decreases from 1.0 to 0.97 as M increases from 0 to 0.90; for 2.0 less than Kn less than 5.0, eta is a function of both Kn and M in this transition region to fully developed free-molecule flow; and for Kn greater than 5.0, eta predicted by free-molecule-flow theory is observed and increases from 1.0 to 1.08 as M increases from 0 to 0.90, again independent of Kn. Therefore, these T(sub e) data provide a guide to the boundary of fully developed free-molecule flow, which is.inferred from this research to exist for Kn greater than 5.0. This boundary criterion is substantiated by other published data on T(sub e) at supersonic speeds.
Document ID
19980235522
Acquisition Source
Headquarters
Document Type
Other - NASA Memorandum (MEMO)
Authors
Cybulski, Ronald J.
(NASA Lewis Research Center Cleveland, OH United States)
Baldwin, Lionel V.
(NASA Lewis Research Center Cleveland, OH United States)
Date Acquired
September 6, 2013
Publication Date
May 1, 1959
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
NASA-MEMO-4-27-59E
E-252
Report Number: NASA-MEMO-4-27-59E
Report Number: E-252
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available