NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Mars Gravity Simulation ProjectHuman beings who make abrupt transitions between one gravitational environment and another undergo severe disruptions of their visual perception and visual- motor coordination, frequently accompanied by "space sickness." Clearly, such immediate effects of exposure to a novel gravitational condition have significant implications for human performance. For example, when astronauts first arrive in Earth orbit their attempts to move about in the spacecraft and to perform their duties are uncoordinated, inaccurate, and inefficient. Other inter-gravitational transitions for which these difficulties can be expected include going from the 0 g of the spacecraft to the. 16 g of the Moon, from 0 g to the .38 g of Mars, and from 0 g back to the 1.0 g of Earth. However, after astronauts have actively interacted with their new gravitational environment for several days, these problems tend to disappear, evidence that some sort of adaptive process has taken place. It would be advantageous, therefore, if there were some way to minimize or perhaps even to eliminate this potentially hazardous adaptive transition period by allowing astronauts to adapt to the altered gravitational conditions before actually entering them. Simultaneous adaptations to both the altered and the normal gravitational environment as a result of repeatedly adapting to one and readapting to the other, a phenomenon known as dual adaptation. The objective of the Mars Gravity Simulator (MGS) Project is to construct a simulation of the visual and bodily effects of altered gravity. This perceptual-motor simulation is created through the use of: 1) differential body pressure to produce simulated hypo-gravity and 2) treadmill-controlled virtual reality to create a corresponding visual effect. It is expected that this combination will produce sensory motor perturbations in the subjects. Both the immediate and adaptive behavioral (postural and ambulatory) responses to these sensory perturbations will be assessed.
Document ID
19990021034
Acquisition Source
Armstrong Flight Research Center
Document Type
Other
Authors
Korienek, Gene
(Oregon State Univ. Corvallis, OR United States)
Date Acquired
August 19, 2013
Publication Date
October 1, 1998
Publication Information
Publication: 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program
Subject Category
Lunar And Planetary Exploration
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available