NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne MeasurementsRoutine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
Document ID
20000012979
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Jarzembski, Maurice A.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Srivastava, Vandana
(Universities Space Research Association Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
November 1, 1999
Publication Information
Publication: Tenth Biennial Coherent Laser Radar Technology and Applications Conference
Subject Category
Instrumentation And Photography
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available