NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
expression of novel gene products upregulated by disuse is normalized by an osteogenic mechanical stimulus: evidence for the molecular basis of a low level biomechanical countermeasure for osteoporosis?The National Research Council's report entitled: A Strategy for Space Biology and Medical Science, highlighted several areas of fundamental scientific investigation which must be addressed to make long-term space exploration not only feasible, but safe. This "Goldberg Strategy," as well as several subsequent reports published by the NRC's Space Studies Board (e.g., Assessment of Programs in Space Biology and Medicine, Smith et. al., 1991), suggests that the principal hurdle to man's extended presence in space is the osteopenia which parallels reduced gravity. Ironically, the most significant risk to the skeleton may only be realized on return to normal gravitational fields, and full recovery of bone mass may never occur. Effective counter-measures to this microgravity induced bone loss are thus essential. Considering the similarities of space and aging induced osteopenia, an indisputable benefit of such a prophylaxis would be its potential as a treatment for the bone loss which plagues over 25 million people in the U.S. The osteogenic potential of mechanical strain is strongly frequency dependent, with sensitivity increasing up through at least 60 Hz (cycles per second). One hundred seconds per day of a 1 Hz cyclic loading will inhibit disuse osteopenia only if sufficient in magnitude to engender 1000 microstrain (mu(epsilon)) in the tissue. When loading is applied at 30 Hz, however, mechanical strains on the order of 5O mu(epsilon) (approx. 1% of the peak strains which occur in bone during vigorous functional activity), can stimulate bone formation in a duration dependent manner. In longer term animal studies, strains of less than 10 mu(epsilon), induced non-invasively via a whole body vibration, will stimulate bone formation on the surfaces of trabeculae, increase bone density, and improve strength. Finally, preliminary results from a double blind prospective clinical trial shows promise in inhibiting the bone loss which parallels the menopause. Based on these observations, we propose that these high frequency, low magnitude, mechanical strains effectively serve as a "surrogate" for musculoskeletal ground reaction forces, and thus represent an ideal countermeasure to the osteopenia which parallels microgravity conditions. The specific goal of this NASA funded work is to identify genes in bone upregulated by disuse, and to determine the efficacy of an osteogenic mechanical stimulus to downregulate their expression.
Document ID
20000020533
Document Type
Conference Paper
Authors
Rubin, C.
(State Univ. of New York Stony Brook, NY United States)
Zhi, J.
(State Univ. of New York Stony Brook, NY United States)
Xu, G.
(State Univ. of New York Stony Brook, NY United States)
Cute, M.
(State Univ. of New York Stony Brook, NY United States)
McLeod, K.
(State Univ. of New York Stony Brook, NY United States)
Hadjiargyrou, M.
(State Univ. of New York Stony Brook, NY United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Publication Information
Publication: Proceedings of the First Biennial Space Biomedical Investigators' Workshop
Subject Category
Aerospace Medicine
Funding Number(s)
CONTRACT_GRANT: NAG5-3950
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20000020485Analytic PrimaryProceedings of the First Biennial Space Biomedical Investigators' Workshop
Document Inquiry