NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Non-Invasive Investigation of Bone Adaptation in Humans to Mechanical LoadingExperimental studies have identified peak cyclic forces, number of loading cycles, and loading rate as contributors to the regulation of bone metabolism. We have proposed a theoretical model that relates bone density to a mechanical stimulus derived from average daily cumulative peak cyclic 'effective' tissue stresses. In order to develop a non-invasive experimental model to test the theoretical model we need to: (1) monitor daily cumulative loading on a bone, (2) compute the internal stress state(s) resulting from the imposed loading, and (3) image volumetric bone density accurately, precisely, and reproducibly within small contiguous volumes throughout the bone. We have chosen the calcaneus (heel) as an experimental model bone site because it is loaded by ligament, tendon and joint contact forces in equilibrium with daily ground reaction forces that we can measure; it is a peripheral bone site and therefore more easily and accurately imaged with computed tomography; it is composed primarily of cancellous bone; and it is a relevant site for monitoring bone loss and adaptation in astronauts and the general population. This paper presents an overview of our recent advances in the areas of monitoring daily ground reaction forces, biomechanical modeling of the forces on the calcaneus during gait, mathematical modeling of calcaneal bone adaptation in response to cumulative daily activity, accurate and precise imaging of the calcaneus with quantitative computed tomography (QCT), and application to long duration space flight.
Document ID
20000020538
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Whalen, R.
(NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Publication Information
Publication: Proceedings of the First Biennial Space Biomedical Investigators' Workshop
Subject Category
Aerospace Medicine
Funding Number(s)
CONTRACT_GRANT: NCC2-5088
CONTRACT_GRANT: NCC2-5186
PROJECT: RTOP 199-26-12-35
PROJECT: DVA Proj. B802-RA
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available