NTRS - NASA Technical Reports Server

Back to Results
anticipatory postural activity during long-duration space flightSomatosensory input has been used to modify motor output in many contexts. During space flight, the use of the lower limb musculature is much less than during activities in 1g. Consequently the neuromuscular activity of the legs is also reduced during space flight. This decrease in muscle activity contributes to muscle atrophy. Furthermore, adaptations to weightlessness contribute to posture and locomotion problems upon the return to Earth. Providing techniques to counter the negative effects of weightlessness on the neuromuscular system is an important goal, particularly during a long-duration mission. Previous work by our group has shown that lower limb neuromuscular activation that normally precedes arm movements in 1g is absent or greatly reduced during similar movements made while freefloating. However, preliminary evidence indicates that applying pressure to the feet results in enhanced neuromuscular activation during rapid arm movements performed while freefloating. This finding suggests that sensory input can be used to "drive" the motor system to increase neuromuscular functioning throughout a mission. The purpose of this investigation was to quantify the increase in neuromuscular activation resulting from the application of pressure to the feet.
Document ID
Document Type
Conference Paper
Layne, C. S.
(Houston Univ. TX United States)
Mulavara, A. P.
(Wyle Life Sciences United States)
McDonald, P. V.
(Nascent Technologies United States)
Pruett, C. J.
(TECMATH United States)
Koslovskaya, B.
(Institute of Biomedical Problems Moscow, USSR)
Bloomberg, J. J.
(NASA Johnson Space Center Houston, TX United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Publication Information
Publication: Proceedings of the First Biennial Space Biomedical Investigators' Workshop
Subject Category
Aerospace Medicine
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20000020485Analytic PrimaryProceedings of the First Biennial Space Biomedical Investigators' Workshop
Document Inquiry