NTRS - NASA Technical Reports Server

Back to Results
Performance of an Optimized Eta Model Code on the Cray T3E and a Network of PCsIn the year 2001, NASA will launch the satellite TRIANA that will be the first Earth observing mission to provide a continuous, full disk view of the sunlit Earth. As a part of the HPCC Program at NASA GSFC, we have started a project whose objectives are to develop and implement a 3D cloud data assimilation system, by combining TRIANA measurements with model simulation, and to produce accurate statistics of global cloud coverage as an important element of the Earth's climate. For simulation of the atmosphere within this project we are using the NCEP/NOAA operational Eta model. In order to compare TRIANA and the Eta model data on approximately the same grid without significant downscaling, the Eta model will be integrated at a resolution of about 15 km. The integration domain (from -70 to +70 deg in latitude and 150 deg in longitude) will cover most of the sunlit Earth disc and will continuously rotate around the globe following TRIANA. The cloud data assimilation is supposed to run and produce 3D clouds on a near real-time basis. Such a numerical setup and integration design is very ambitious and computationally demanding. Thus, though the Eta model code has been very carefully developed and its computational efficiency has been systematically polished during the years of operational implementation at NCEP, the current MPI version may still have problems with memory and efficiency for the TRIANA simulations. Within this work, we optimize a parallel version of the Eta model code on a Cray T3E and a network of PCs (theHIVE) in order to improve its overall efficiency. Our optimization procedure consists of introducing dynamically allocated arrays to reduce the size of static memory, and optimizing on a single processor by splitting loops to limit the number of streams. All the presented results are derived using an integration domain centered at the equator, with a size of 60 x 60 deg, and with horizontal resolutions of 1/2 and 1/3 deg, respectively. In accompanying charts we report the elapsed time, the speedup and the Mflops as a function of the number of processors for the non-optimized version of the code on the T3E and theHIVE. The large amount of communication required for model integration explains its poor performance on theHIVE. Our initial implementation of the dynamic memory allocation has contributed to about 12% reduction of memory but has introduced a 3% overhead in computing time. This overhead was removed by performing loop splitting in some of the high demanding subroutines. When the Eta code is fully optimized in order to meet the memory requirement for TRIANA simulations, a non-negligeable overhead may appear that may seriously affect the efficiency of the code. To alleviate this problem, we are considering implementation of a new algorithm for the horizontal advection that is computationally less expensive, and also a new approach for marching in time.
Document ID
Document Type
Conference Paper
Kouatchou, Jules (NASA Goddard Space Flight Center Greenbelt, MD United States)
Rancic, Miodrag (NASA Goddard Space Flight Center Greenbelt, MD United States)
Geiger, Jim (NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 2000
Subject Category
Computer Programming and Software
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20000064579Analytic PrimaryWelcome to the NASA High Performance Computing and Communications Computational Aerosciences (CAS) Workshop 2000
Document Inquiry