NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star Binaries LTSA98My group, in close collaboration with Dr. Zhang's group at University of Alabama-Huntsville, have been systematically analyzing and re-analyzing a substantial amount of archival data from previous and ongoing X-ray missions, in order to study possible relativistic effects around stellar-mass black holes and neutron stars. Our effort has been focused primarily on the data from the Rossi X-ray Timing Explorer. We carefully studied interesting quasi-periodic X-ray variability in newly discovered black hole candidates (XTE J1859+226 and XTE J1550-564), which, as we had proposed earlier, could be caused by general relativistic process (e.g., frame dragging) around the central black hole. We also discovered an intriguing temporal correlation between X-ray photons at different energies that is associated with the quasi-periodic signals of interest. The results provided new insights into the physical origin of the phenomena. Furthermore, we studied the spectral lines of black hole candidates which provide another avenue for studying general relativistic processes around black holes. The lines-may originate in the relativistic jets (which could be powered by the spin of the black hole) or in the disk around the black hole, as in the cases of 4U 1630-47 and GX 339-4 (two well-known black hole candidates), and may thus be distorted or shifted due to relativistic effects. Of course, neutron star systems were not forgotten either. After examining the properties of newly discovered fast quasi-periodic variability (at kiloHertz) associated with such systems, we proposed a relativistic model to explain the origin of the signals. We have also started to use new great observatories in orbit (such as Chandra and XMM-Newton) to observe the sources that are of interest to us. Finally, interesting results were also been obtained from our collaborations with other groups who are interested in some of the same objects. Such collaborative efforts have greatly enhanced the project and will likely continue in the future.
Document ID
20000088614
Acquisition Source
Goddard Space Flight Center
Document Type
Other
Authors
Cui, Wei
(Massachusetts Inst. of Tech. Cambridge, MA United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2000
Subject Category
Astrophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available