NTRS - NASA Technical Reports Server

Back to Results
Periodic Comet Showers, Mass Extinctions, and the GalaxyGeologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.
Document ID
Document Type
Conference Paper
Rampino, M. R.
(NASA Goddard Inst. for Space Studies New York, NY United States)
Stothers, R. B.
(NASA Goddard Inst. for Space Studies New York, NY United States)
Date Acquired
August 20, 2013
Publication Date
January 1, 2000
Publication Information
Publication: Catastrophic Events and Mass Extinctions: Impacts and Beyond
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20010007049Analytic PrimaryCatastrophic Events and Mass Extinctions: Impacts and Beyond
Document Inquiry
No Preview Available