NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sputtering Erosion in the Ion ThrusterDuring the first phase of this research, the sputtering yields of molybdenum by low energy (100 eV and higher) xenon ions were measured by using the methods of secondary neutral mass spectrometry (SNMS) and Rutherford backscattering spectrometry (RBS). However, the measured sputtering yields were found to be far too low to explain the sputtering erosions observed in the long-duration tests of ion thrusters. The only difference between the sputtering yield measurement experiments and the ion thruster tests was that the later are conducted at high ion fluences. Hence, a study was initiated to investigate if any linkage exists between high ion fluence and an enhanced sputtering yield. The objective of this research is to gain an understanding of the causes of the discrepancies between the sputtering rates of molybdenum grids in an ion thruster and those measured from our experiments. We are developing a molecular dynamics simulation technique for studying low-energy xenon ion interactions with molybdenum. It is difficult to determine collision sequences analytically for primary ions below the 200 eV energy range where the ion energy is too low to be able to employ a random cascade model with confidence and it is too high to have to consider only single collision at or near the surface. At these low energies, the range of primary ions is about 1 to 2 nm from the surface and it takes less than 4 collisions on the average to get an ion to degrade to such an energy that it can no longer migrate. The fine details of atomic motion during the sputtering process are revealed through computer simulation schemes. By using an appropriate interatomic potential, the positions and velocities of the incident ion together with a sufficient number of target atoms are determined in small time steps. Hence, it allows one to study the evolution of damages in the target and its effect on the sputtering yield. We are at the preliminary stages of setting up the simulation program.
Document ID
20010012166
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Ray, Pradosh K.
(Tuskegee Inst. AL United States)
Mantenieks, Maris A.
Date Acquired
August 20, 2013
Publication Date
August 1, 2000
Publication Information
Publication: HBCUs/OMUs Research Conference Agenda and Abstracts
Subject Category
Spacecraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available