NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU-ConceptsSolid oxide electrolyzers, such as electrolysis cells utilizing yttria-stabilized zirconia, can produce oxygen from Mars atmospheric carbon dioxide and reject carbon monoxide and unreacted carbon dioxide in a separate stream. The oxygen-production process has been shown to be far more efficient if the high-pressure, unreacted carbon dioxide can be separated and recycled back into the feed stream. Additionally, the mass of the adsorption compressor can be reduced. Also, the carbon monoxide by-product is a valuable fuel for space exploration and habitation, with applications from fuel cells to production of hydrocarbons and plastics. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU. Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, respectively. In our research, we will design, construct, and test an innovative, robust, low mass, low power separation device that can recover carbon dioxide and carbon monoxide for Mars ISRU, Such fundamental process technology, involving gas-solid phase separation in a reduced gravitational environment, will help to enable Human Exploration and Development of Space. The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, The separation device will be scaled to operate with a CO2 sorption compressor and a zirconia electrolysis device built at the NASA Ames Research Center and the University of Arizona, Research needs for the design shown are as follows: (1) The best adsorbent for the process must be determined. (2) Adsorption isotherms must be measured, both for pure components and mixtures. (3) Mathematical modeling must be performed to provide a solid framework for design. (4) The separation system must be constructed and tested. (5) System integration must be studied.
Document ID
20010024956
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
LeVan, M. Douglas
(Vanderbilt Univ. Nashville, TN United States)
Finn, John E.
(NASA Ames Research Center Moffett Field, CA United States)
Sridhar, K. R.
(Arizona Univ. Tucson, AZ United States)
Date Acquired
August 20, 2013
Publication Date
December 1, 2000
Publication Information
Publication: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available