NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Role of Convection and Growth Competition in Phase Selection in Microgravity: Controlled Convection in the Containerless Processing of Steel AlloysContainerless processing using electromagnetic levitation (EML) is a powerful technique in the investigation of reactive molten metal systems. On ground, the power required to overcome the weight of the sample is sufficient to cause significant heating and induce substantial melt convection. In microgravity, the heating and positioning fields may be decoupled and the field strength may be varied to achieve the desired level of convection within the limits set by the geometry of the levitation coil and the sample size. From high-speed digital images of the double recalescence behavior of Fe-Cr-Ni alloys in ground-based testing and in reduced-gravity aboard the NASA KC-135 parabolic aircraft, we have shown that phase selection can be predicted based on a growth competition model. An important parameter in this model is the delay time between primary nucleation and subsequent nucleation of the stable solid within the liquid/metastable solid array. This delay time is a strong function of composition and a weak function of the undercooling of the melt below the metastable liquidus. From the results obtained during the first Microgravity Sciences Laboratory (MSL-1) mission, we also know that convection may significantly influence the delay time, especially at low undercoolings. Currently, it is unclear what mechanism controls the formation of a heterogeneous site that allows nucleation of the austenitic phase on the pre-existing ferrite skeleton. By examining the behavior of the delay time under different convective conditions, we hypothesize that we can differentiate between several of these mechanisms to gain an understanding of how to control microstructural. evolution. We will anchor these predictions by examining samples quenched at different times following primary recalescence in microgravity. A second important parameter in the growth competition model is the identification of the growth rate of the stable phase into the semi-solid array that formed during primary recalescence. Current dendritic growth theory is inadequate in predicting solidification behavior under these conditions as metallographic analyses show that stable phase growth proceeds along the interface between the metastable solid and residual liquid. Since growth velocity is independent of the initial undercooling relative to the metastable liquidus, we hypothesize that purely thermal effects can be separated from other important growth model parameters by careful selection of the liquid composition in a ternary system.
Document ID
20010057244
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Matson, D. M.
(Massachusetts Inst. of Tech. United States)
Loser, W.
(Institute for Solid State and Materials Research Dresden Germany)
Rogers, J. R.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Flemings, M. C.
(Massachusetts Inst. of Tech. United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 2001
Publication Information
Publication: Microgravity Materials Science Conference 2000
Volume: 1
Subject Category
Metals And Metallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available