NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of Traveling Magnetic Field on Dynamics of SolidificationTMF is based on imposing a controlled phase-shift in a train of electromagnets, forming a stack. Thus, the induced magnetic field can be considered to be travelling along the axis of the stack. The coupling of this traveling wave with an electrically conducting fluid results in a basic flow in a form of a single axisymmetric roll. The magnitude and direction of this flow can be remotely controlled. Furthermore, it is possible to localize the effect of this force field though activating only a number of the magnets. This force field generated in the fluid can, in principle, be used to control and modify convection in the molten material. For example, it can be used to enhance convective mixing in the melt, and thereby modify the interface shape, and macrosegregation. Alternatively, it can be used to counteract thermal and/or solutal buoyancy forces. High frequency TMF can be used in containerless processing techniques, such as float zoning, to affect the very edge of the fluid so that Marangoni flow can be counter balanced. The proposed program consists of basic fundamentals and applications. Our goal in conducting the following experiments and analyses is to establish the validity of TMF as a new tool for solidification processes. Due to its low power consumption and simplicity of design, this tool may find wide spread use in a variety of space experiments. The proposed ground based experiments are intended to establish the advantages and limitations of employing this technique. In the fundamentals component of the proposed program, we will use theoretical tools and experiments with mercury to establish the fundamental aspects of TMF-induced convection through a detailed comparison of theoretical predictions and experimental measurements of flow field. In this work, we will conduct a detailed parametric study involving the effects of magnetic field strength, frequency, wave vector, and the fluid geometry. The applications component of this work will be focused on investigating the effect of TMF on the following solidification and pre-directional solidification processes: (1) Bridgman growth of Ga:Ge with the goal of counteracting the buoyancy-driven convection; (2) Mixing of Pb-Ga and Pb-Sn alloys with the aim of initiating and maintaining a uniform melt prior to solidification processing; and (3) Float Zone growth with the aim of identifying, through simulations and model experiments, conditions needed to counteract Marangoni flow in a microgravity environment. The proposed research has strong relevance to microgravity research and the objectives of the NRA. TMF can provide a unique and accurate mechanism for generation and control of desirable flow patterns for microgravity research. These attributes have significant relevance to 1) Alloy mixing prior to solidification in a microgravity environment. TMF can provide this mixing with a low level of power consumption; (2) TMF can offset the deleterious effects of Marangoni convection in microgravity containerless processing. Thus, TMF can be instrumental in further understanding this phenomena; (3) Generation of controlled flows will allow the investigation of the effect of these flows on growth morphology and growth kinetics; and (4) On Earth, TMF has the potential to significantly counter-balance thermosolutal convection, thereby creating conditions similar to those obtained in microgravity. Once demonstrated, this new tool for use in solidification has the strong potential to find applications in a host of microgravity material research projects.
Document ID
20010057290
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Mazuruk, Konstantin
(NASA Marshall Space Flight Center Huntsville, AL United States)
Grugel, Richard
(NASA Marshall Space Flight Center Huntsville, AL United States)
Motakef, Shariar
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 2001
Publication Information
Publication: Microgravity Materials Science Conference 2000
Volume: 2
Subject Category
Solid-State Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available