NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Studies of Elementary Reactions of Chemical Importance in the Atmospheres of PlanetsThe methyl self-reaction was studied at T = 298 K and 202 K and at three different pressures, P = 0.5, 1.0, and 2.1 Torr. The experimental measurements were performed in our discharge flow-mass spectrometer (DF-MS) apparatus. The methyl radicals were generated by the reaction of F with methane. Passing a mixture of molecular fluorine, F2, in helium through a microwave cavity generated the atomic fluorine reagent. The atomic F enters the flow tube through a rear port on the flow tube. The methane reagent enters the flow tube through a movable injector located coaxial in the flow tube. The decay of methyl radical signal was monitored at a mass/charge ratio (m/z) of 15 as a function of the injector distance. To minimize secondary chemistry from the reaction CH3 + F to CH2 + HF the initial [CH4](sub 0)/[F](sub 0) was above 37.0 and typically 100. This ensures a 1:1 relationship between initial [F] and [CH3]. A titration of F with excess Cl2 yields the initial [F](sub 0). Our experimental methodology to accurately measure the mass spectrometer scaling factor, i.e., the relationship between initial signal and [CH3](sub 0) has been improved. Now we measure the CH3 signal decay under exponential decay conditions at low initial [F](sub 0), 3x10(exp 11) molecule/cc, in the presence of Cl2. This minimizes the second-order decay contributed by the CH3 self-reaction and a simple extrapolation of the 1n(signal) vs time plot to t = 0 gives the initial signal. This provides the desired relationship between initial signal at 15 amu and [CH3](sub 0). The resulting calibration is then applied to the observed decay of the CH3 signal at high concentrations of CH3 assuming linearity of this scaling factor.
Document ID
20010066527
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Nesbitt, Fred L.
(Catholic Univ. of America Washington, DC United States)
Date Acquired
September 7, 2013
Publication Date
May 31, 2001
Subject Category
Lunar And Planetary Science And Exploration
Funding Number(s)
CONTRACT_GRANT: NCC5-68
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available