NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Implementing a Nitrogen-Based Model for Autotrophic Respiration Using Satellite and Field ObservationsThe rate of carbon accumulation by terrestrial plant communities in a process-level, mechanistic modeling is the difference of the rate of gross photosynthesis by a canopy (A(sub g)) and autotrophic respiration (R) of the stand. Observations for different biomes often show that R to be a large and variable fraction of A(sub g), ca. 35% to 75%, although other studies suggest the ratio of R and A(sub g) to be less variable. Here, R has been calculated according to the two compartment model as being the sum of maintenance and growth components. The maintenance respiration of foliage and living fine roots for different biomes has been determined objectively from observed nitrogen content of these organs. The sapwood maintenance respiration is based on pipe theory, and checked against an independently derived equation considering sapwood biomass and its maintenance coefficient. The growth respiration has been calculated from the difference of A(sub g) and maintenance respiration. The A(sub g) is obtained as the product of biome-specific radiation use efficiency for gross photosynthesis under unstressed conditions and intercepted photosynthetically active radiation, and adjusted for stress. Calculations have been done using satellite and ground observations for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) of boreal forests, crop land, temperate deciduous forest, temperate grassland, tropical deciduous forest, tropical evergreen forest, tropical savanna, and tundra. The ratio of annual respiration and gross photosynthesis, (R/A(sub g)), is found to be 0.5-0.6 for temperate and cold adopted biome areas, but somewhat higher for tropical biome areas (0.6-0.7). Interannual variation of the fluxes is found to be generally less than 15%. Calculated fluxes are compared with observations and several previous estimates. Results of sensitivity analysis are presented for uncertainties in parameterization and input data. It is found that uncertainty in determining maintenance respiration for tropical biomes is such that R/A(sub g) for these biomes could be similar to that for temperate biomes.
Document ID
20020010577
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Choudhury, Bhaskar J.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Houser, Paul
Date Acquired
September 7, 2013
Publication Date
January 1, 2001
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available