NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall ContactA detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.
Document ID
20030060551
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Larson, D. J., Jr.
(NASA Headquarters Washington, DC United States)
Zhang, H.
(State Univ. of New York Stony Brook, NY, United States)
Date Acquired
September 7, 2013
Publication Date
February 1, 2003
Publication Information
Publication: 2002 Microgravity Materials Science Conference
Subject Category
Solid-State Physics
Funding Number(s)
CONTRACT_GRANT: NAG8-1700
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available