NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Monte Carlo Methods in Materials Science Based on FLUKA and ROOTA comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the CERN ALICE (A Large Ion Collisions Experiment) software team through an adaptation of their existing AliROOT (ALICE Using ROOT) architecture. In order to check our progress against actual data, we have chosen to simulate the ATIC14 (Advanced Thin Ionization Calorimeter) cosmic-ray astrophysics balloon payload as well as neutron fluences in the Mir spacecraft. This paper contains a summary of status of this project, and a roadmap to its successful completion.
Document ID
20030060561
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Pinsky, Lawrence
(Houston Univ. TX, United States)
Wilson, Thomas
(NASA Johnson Space Center Houston, TX, United States)
Empl, Anton
(Houston Univ. TX, United States)
Andersen, Victor
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
September 7, 2013
Publication Date
February 1, 2003
Publication Information
Publication: 2002 Microgravity Materials Science Conference
Subject Category
Numerical Analysis
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available