NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite DataSurface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have been developed. Errors have been estimated to range from 1K to 5K mainly due to cloud masking problems. With many additional channels available, it is expected that the EOS-Moderate Resolution Imaging Spectroradiometer (MODIS) will provide an improved characterization of clouds and a good discrimination of clouds from snow or ice surfaces.
Document ID
20030062807
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Comiso, Joey C.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
September 7, 2013
Publication Date
October 1, 1995
Publication Information
Publication: Proceedings of the First Moderate Resolution Imaging Spectroradiometer (MODIS) Workshop on Snow and Ice
Subject Category
Earth Resources And Remote Sensing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available