NTRS - NASA Technical Reports Server

Back to Results
Human Peripheral Blood Mononuclear Cells Cultured in Normal and Hyperglycemic Media in Simulated Microgravity Using NASA BioreactorsWe sought answers to several questions this summer at NASA Johnson Space Center. Initial studies involved the in vitro culture of human peripheral blood mononuclear in cells in different conditioned culture media. Several human cancer clones were similarly studied to determine responses to aberrant glycosylation by the argon laser. The cells were grown at unit gravity in flasks and in simulated microgravity using NASA bioreactors. The cells in each instance were analyzed by flow cytometry. Cell cycle analysis was acquired by staining nuclear DNA with propidium iodide. Responses to the laser stimulation was measured by observing autofluorescence emitted in the green and red spectra after stimulation. Extent of glycosylation correlated with the intensity of the laser stimulated auto-fluorescence. Our particular study was to detect and monitor aberrant glycosylation and its role in etiopathogenesis. Comparisons were made between cells known to be neoplastic and normal cell controls using the same Laser Induced Autofluorescence technique. Studies were begun after extensive literature searches on using the antigen presenting potential of dendritic cells to induce proliferation of antigen specific cytotoxic T-cells. The Sendai virus served as the antigen. Our goal is to generate sufficient numbers of such cells in the simulated microgravity environment for use in autologous transplants of virally infected individuals including those positive for hepatitis and HIV.
Document ID
Document Type
Lawless, DeSales
(Fordham Univ. New York, NY, United States)
Date Acquired
September 7, 2013
Publication Date
March 1, 2003
Publication Information
Publication: National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000
Subject Category
Aerospace Medicine
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.
No Preview Available