NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Neural Development Under Conditions of SpaceflightOne of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window studied, microgravity has minimal long-term impact on cognitive mapping function and cellular substrates important for this function. Any differences due to development in microgravity were transient and returned to normal soon after return to Earth.
Document ID
20030068217
Acquisition Source
Johnson Space Center
Document Type
Other
Authors
Kosik, Kenneth S.
(Brigham and Women's Hospital Boston, MA, United States)
Steward, Oswald
(California Univ. Irvine, CA, United States)
Temple, Meredith D.
(National Inst. of Health Bethesda, MD, United States)
Denslow, Maria J.
(Beth Israel Deaconess Medical Center Boston, MA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Publication Information
Publication: The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission
Subject Category
Aerospace Medicine
Funding Number(s)
CONTRACT_GRANT: NAG2-964
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available