NTRS - NASA Technical Reports Server

Back to Results
The Effects of Spaceflight on the Rat Circadian Timing SystemTwo fundamental environmental influences that have shaped the evolution of life on Earth are gravity and the cyclic changes occurring over the 24-hour day. Light levels, temperature, and humidity fluctuate over the course of a day, and organisms have adapted to cope with these variations. The primary adaptation has been the evolution of a biological timing system. Previous studies have suggested that this system, named the circadian (circa - about; dies - a day) timing system (CTS), may be sensitive to changes in gravity. The NASA Neurolab spaceflight provided a unique opportunity to evaluate the effects of microgravity on the mammalian CTS. Our experiment tested the hypotheses that microgravity would affect the period, phasing, and light sensitivity of the CTS. Twenty-four Fisher 344 rats were exposed to 16 days of microgravity on the Neurolab STS-90 mission, and 24 Fisher 344 rats were also studied on Earth as one-G controls. Rats were equipped with biotelemetry transmitters to record body temperature (T(sub b)) and heart rate (HR) continuously while the rats moved freely. In each group, 18 rats were exposed to a 24-hour light-dark (LD 12:12) cycle, and six rats were exposed to constant dim red-light (LL). The ability of light to induce a neuronal activity marker (c-fos) in the circadian pacemaker of the brain, the suprachiasmatic nucleus (SCN), was examined in rats studied on flight days two (FD2) and 14 (FD14), and postflight days two (R+1) and 14 (R+13). The flight rats in LD remained synchronized with the LD cycle. However, their T(sub b), rhythm was markedly phase-delayed relative to the LD cycle. The LD flight rats also had a decreased T(sub b) and a change in the waveform of the T(sub b) rhythm compared to controls. Rats in LL exhibited free-running rhythms of T(sub b), and HR; however, the periods were longer in microgravity. Circadian period returned to preflight values after landing. The internal phase angle between rhythms was different in flight than in one-G. Compared with control rats, the flight rats exhibited no change in HR. Finally, the LD FD2 flight rats demonstrated a reduced sensitivity to light as shown by significantly reduced c-fos expression in the SCN in comparison with controls. These findings constitute the first demonstration that microgravity affects the fundamental properties of the mammalian circadian timing system, specifically by influencing the clock's period, and its ability to maintain temporal organization and phase angle of synchronization to an external LD cycle.
Document ID
Document Type
Fuller, Charles A. (California Univ. Davis, CA, United States)
Murakami, Dean M. (California Univ. Davis, CA, United States)
Hoban-Higgins, Tana M. (California Univ. Davis, CA, United States)
Fuller, Patrick M. (California Univ. Davis, CA, United States)
Robinson, Edward L. (California Univ. Davis, CA, United States)
Tang, I.-Hsiung (California Univ. Davis, CA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Publication Information
Publication: The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission
Subject Category
Aerospace Medicine
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 20030068223.pdf STI

Related Records

IDRelationTitle20030068190Analytic PrimaryThe Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission