NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Geodata Modeling and Query in Geographic Information SystemsGeographic information systems (GIS) deal with collecting, modeling, man- aging, analyzing, and integrating spatial (locational) and non-spatial (attribute) data required for geographic applications. Examples of spatial data are digital maps, administrative boundaries, road networks, and those of non-spatial data are census counts, land elevations and soil characteristics. GIS shares common areas with a number of other disciplines such as computer- aided design, computer cartography, database management, and remote sensing. None of these disciplines however, can by themselves fully meet the requirements of a GIS application. Examples of such requirements include: the ability to use locational data to produce high quality plots, perform complex operations such as network analysis, enable spatial searching and overlay operations, support spatial analysis and modeling, and provide data management functions such as efficient storage, retrieval, and modification of large datasets; independence, integrity, and security of data; and concurrent access to multiple users. It is on the data management issues that we devote our discussions in this monograph. Traditionally, database management technology have been developed for business applications. Such applications require, among other things, capturing the data requirements of high-level business functions and developing machine- level implementations; supporting multiple views of data and yet providing integration that would minimize redundancy and maintain data integrity and security; providing a high-level language for data definition and manipulation; allowing concurrent access to multiple users; and processing user transactions in an efficient manner. The demands on database management systems have been for speed, reliability, efficiency, cost effectiveness, and user-friendliness. Significant progress have been made in all of these areas over the last two decades to the point that many generalized database platforms are now available for developing data intensive applications that run in real-time. While continuous improvement is still being made at a very fast-paced and competitive rate, new application areas such as computer aided design, image processing, VLSI design, and GIS have been identified by many as the next generation of database applications. These new application areas pose serious challenges to the currently available database technology. At the core of these challenges is the nature of data that is manipulated. In traditional database applications, the database objects do not have any spatial dimension, and as such, can be thought of as point data in a multi-dimensional space. For example, each instance of an entity EMPLOYEE will have a unique value corresponding to every attribute such as employee id, employee name, employee address and so on. Thus, every Employee instance can be thought of as a point in a multi-dimensional space where each dimension is represented by an attribute. Furthermore, all operations on such data are one-dimensional. Thus, users may retrieve all entities satisfying one or more constraints. Examples of such constraints include employees with addresses in a certain area code, or salaries within a certain range. Even though constraints can be specified on multiple attributes (dimensions), the search for such data is essentially orthogonal across these dimensions.
Document ID
20040008641
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Adam, Nabil
(Rutgers Univ. Newark, NJ, United States)
Date Acquired
September 7, 2013
Publication Date
September 1, 1996
Subject Category
Computer Programming And Software
Funding Number(s)
CONTRACT_GRANT: NAS5-32337
CONTRACT_GRANT: USRA-555-46/NASA
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available