NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nonlinear Thermal Analyses of a Liquid Hydrogen Tank WallA thermal evaluation of a composite tank wall design for a liquid hydrogen tank was performed in the present study. The primary focus of the current effort was to perform one-dimensional, temperature nonlinear, transient thermal analyses to determine the through-the-thickness temperature profiles. These profiles were used to identify critical points within the flight envelope that could have detrimental effects on the adhesive bondlines used in the construction of the tank wall. Additionally, this paper presents the finite element models, analysis strategies, and thermal analysis results that were determined for several vehicle flight conditions. The basic tank wall configuration used to perform the thermal analyses consisted of carbon-epoxy facesheets and a Korex honeycomb core sandwich that was insulated with an Airex cryogenic foam and an Alumina Enhanced Thermal Barrier (AETB-12). Nonlinear, transient thermal analyses were conducted using the ABAQUS finite element code. Tank wall models at a windward side location on the fuel tank were analyzed for three basic flight conditions: cold-soak (ground-hold), ascent, and re-entry. Additionally, three ambient temperature boundary conditions were applied to the tank wall for the cold-soak condition, which simulated the launch pad cooldown process. Time-dependent heating rates were used in the analyses of the ascent and reentry segments of the flight history along with temperature dependent material properties. The steady-state through-the-thickness temperature profile from the cold-soak condition was used as the initial condition for the ascent analyses. Results from the nonlinear thermal analyses demonstrated very good correlation with results from similar models evaluated by Northrop- Grumman using a different analysis tool. Wall through-the-thickness temperature gradients as a function of flight time were obtained for future incorporation into a full-scale thermostructural analysis to evaluate the adhesive bondlines. As a result of the thermal analyses conducted, a sufficient level of confidence was demonstrated in the thermal modeling and analysis capabilities of ABAQUS to warrant future use as a thermo-structural analysis tool to evaluate cryogenic tank wall designs.
Document ID
20040013175
Acquisition Source
Langley Research Center
Document Type
Other
Authors
Smeltzer, Stanley S., III
(NASA Langley Research Center Hampton, VA, United States)
Waters, W. Allen, Jr.
(Lockheed Martin Space Systems Co. Hampton, VA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Subject Category
Computer Programming And Software
Meeting Information
Meeting: JANNAF 39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/3rd Modeling and Simulation Joint Subcommittee Meeting
Location: Colorado Springs, CO
Country: United States
Start Date: December 1, 2003
End Date: December 5, 2003
Sponsors: Department of the Army, Department of the Navy, NASA Headquarters, Department of the Air Force
Funding Number(s)
OTHER: 23-762-55-LE
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available