NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high concentrations throughout both convective and stratiform cloud regions. A striking difference in particle shape in cirrus formed in situ, cirrus formed from maritime anvils and cirrus formed from continental anvils. Over 50% of the mass of in situ cirrus ice particles is composed of bullet rosettes, while bullet rosettes are virtually non-existent in maritime and tropical anvils. Tropical anvils are composed of mostly singular, plates, capped columns, and blocky irregular shapes, while continental anvils have a much higher percentage of aggregates, some of which are chains of small spheroidal particles that appear to result from homogeneous freezing of drops. A correlation between high electric fields in continental anvils and the formation of aggregates is hypothesized.
Document ID
20040015129
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Date Acquired
September 7, 2013
Publication Date
February 4, 2004
Subject Category
Meteorology And Climatology
Funding Number(s)
CONTRACT_GRANT: NAS5-00244
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available