NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Transport And Chemical Effects On Concurrent And Opposed-Flow Flame Spread At MicrogravityFlame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. With suitable assumptions, deRis showed that the spread rate (S(sub f)) is proportional to the buoyant or forced convection velocity (U) and thus suggests that S(sub f) is indeterminate at mu g (since S(sub f) = U) unless a forced flow is applied. (In contrast, for thermally thin fuels, the ideal S(sub f) is independent of U.) The conventional view, as supported by computations and space experiments, is that for quiescent g conditions, S(sub f) must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In recent work we have found evidence that radiative transfer from the flame itself can lead to steady flame spread at mu g over thick fuel beds. Our current work focuses on refining these experiments and a companion modeling effort toward the goal of a space flight experiment called Radiative Enhancement Effects on Flame Spread (REEFS) planned for the International Space Station (ISS) c. 2007.
Document ID
20040053516
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Son, Y.
(University of Southern California Los Angeles, CA, United States)
Zouein, G.
(University of Southern California Los Angeles, CA, United States)
Ronney, P. D.
(University of Southern California Los Angeles, CA, United States)
Gokoglu, S.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
August 1, 2003
Publication Information
Publication: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems
Subject Category
Inorganic, Organic And Physical Chemistry
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available