NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-AlloysAmong all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) ~1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.
Document ID
20040053541
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Varma, A.
(Notre Dame Univ. IN, United States)
Lau, C.
(Notre Dame Univ. IN, United States)
Mukasyan, A.
(Notre Dame Univ. IN, United States)
Date Acquired
September 7, 2013
Publication Date
August 1, 2003
Publication Information
Publication: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems
Subject Category
Chemistry And Materials (General)
Funding Number(s)
CONTRACT_GRANT: NAG3-2133
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available