NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel PoolsSchiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.
Document ID
20040053547
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Ross, Howard D.
(NASA Glenn Research Center Cleveland, OH, United States)
Cai, Jinsheng
(California Univ. Irvine, CA, United States)
Liu, Feng
(California Univ. Irvine, CA, United States)
Sirignano, William A.
(California Univ. Irvine, CA, United States)
Miller, Fletcher J.
(National Center for Microgravity Research on Fluids and Combustion Cleveland, OH, United States)
Date Acquired
August 21, 2013
Publication Date
August 1, 2003
Publication Information
Publication: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
CONTRACT_GRANT: NAG3-2024
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available