NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Combustion Of Metals In Reduced Gravity And Extraterrestrial EnvironmentsThe recent focus of this research project has been to model the combustion of isolated metal droplets and, in particular, to couple the existing theories and formulations of phenomena such as condensation, reaction kinetics, radiation, and surface reactions to formulate a more complete combustion model. A fully transient, one-dimensional (spherical symmetry) numerical model that uses detailed chemical kinetics, multi-component molecular transport mechanisms, condensation kinetics, and gas phase radiation heat transfer was developed. A coagulation model was used to simulate the particulate formation of MgO. The model was used to simulate the combustion of an Mg droplet in pure O2 and CO2. Methanol droplet combustion is considered as a test case for the solution method for both quasi-steady and fully transient simulations. Although some important processes unique to methanol combustion, such as water absorption at the surface, are not included in the model, the results are in sufficient agreement with the published data. Since the major part of the heat released in combustion of Mg, and in combustion of metals in general, is due to the condensation of the metal oxide, it is very important to capture the condensation processes correctly. Using the modified nucleation theory, an Arrhenius type rate expression is derived to calculate the condensation rate of MgO. This expression can be easily included in the CHEMKIN reaction mechanism format. Although very little property data is available for MgO, the condensation rate expression derived using the existing data is able to capture the condensation of MgO. An appropriate choice of the reference temperature to calculate the rate coefficients allows the model to correctly predict the subsequent heat release and hence the flame temperature.
Document ID
20040053551
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Abbud-Madrid, A.
(Colorado Univ. Boulder, CO, United States)
Modak, A.
(Colorado Univ. Boulder, CO, United States)
Branch, M. C.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
September 7, 2013
Publication Date
August 1, 2003
Publication Information
Publication: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems
Subject Category
Chemistry And Materials (General)
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available