NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Low Reynolds Number Droplet Combustion In CO2 Enriched Atmospheres In MicrogravityThe effect of radiative feedback from the gas phase in micro-gravity combustion processes has been of increasing concern because of the implications in the selection and evaluation of appropriate fire suppressants. The use of CO2, an optically thick gas in the infrared region of the electromagnetic spectrum, has garnered widespread acceptance as an effective fire suppressant for most ground based applications. Since buoyant forces often dominate the flow field in 1-g environments the temperature field between the flame front and the fuel surface is not significantly affected by gas phase radiative absorption and re-emission as these hot gases are quickly swept downstream. However, in reduced gravity environments where buoyant-driven convective flows are negligible and where low-speed forced convective flows may be present at levels where gas phase radiation becomes important, then changes in environment that enhance gas phase radiative effects need to be better understood. This is particularly true in assessments of flammability limits and selection of appropriate fire suppressants for future space applications. In recognition of this, a ground-based investigation has been established that uses a droplet combustion configuration to systematically study the effects of enhanced gas phase radiation on droplet burn rates, flame structure, and radiative output from the flame zone.
Document ID
20040053595
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Hicks, M. C.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
September 7, 2013
Publication Date
August 1, 2003
Publication Information
Publication: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems
Subject Category
Propellants And Fuels
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available