NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Far Infrared Lines of OH as Molecular Cloud DiagnosticsFuture IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.
Document ID
20040074287
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Smith, Howard A.
(Harvard-Smithsonian Center for Astrophysics Cambridge, MA, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 2004
Publication Information
Publication: New Concepts for Far-Infrared and Submillimeter Space Astronomy
Subject Category
Astronomy
Funding Number(s)
CONTRACT_GRANT: NAG5-10659
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available