NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An Infrared Telescope for Planet Detection and General AstrophysicsNASA plans to launch a Terrestrial Planet Finder (TPF) mission in 2014 to detect and characterize Earth-like planets around nearby stars, perform comparative planetology studies, and obtain general astrophysics observations. During our recently completed a TPF Mission Architecture study for NASA/JPL we developed the conceptual design for a 28-meter telescope with an IR Coronagraph that meets these mission objectives. This telescope and the technology it embodies are directly applicable to future Far-IR and Submillimeter space missions. The detection of a 30th magnitude planet located within 50 milli-arc-seconds of a 5th (Visual) magnitude star is an exceptionally challenging objective. Observations in the thermal infrared (7-17 microns) are somewhat easier since the planet is "only" 15(sup m) fainter than the star at these wavelengths, but many severe challenges must still be overcome. These challenges include: 1. Designing a coronagraph for star:planet separations less than or equal to lambda/D. 2. Developing the deployment scheme for a 28m space telescope that can fit in an existing launch vehicle payload fairing. 3. Generating configuration layouts for the IR telescope, coronagraph, spacecraft bus, sunshade, solar array, and high-gain antenna. 4. Providing: Structural stability to within 10 microns to support the optics. Thermal control to achieve the necessary structural stability, as well as providing a stable (approx. 30K) thermal environment for the optics. Dynamics isolation from potential jitter sources. 5. Minimizing launch mass to provide the maximum payload for the science mission Interfacing to an EELV Heavy launch vehicle, including acoustic and stress loads for the launch environment. 6. Identifying the key technologies (which can be developed by 2009) that will enable TPF mission to be performed. 7. Generating a manufacturing plan that will permit TPF to be developed at a reasonable cost and schedule. Many of these design challenges result in inherently conflicting requirements on the design of TPF. Drawing on our experience with large space telescopes such as the Chandra X-ray Observatory and the Next Generation Space Telescope, we have created a conceptual design for TPF that successfully meets these challenging requirements. This paper describes our solution to these challenges.
Document ID
20040074321
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Lillie, C. F.
(TRW Space and Electronics Group United States)
Atkinson, C. B.
(TRW Space and Electronics Group United States)
Casement, L. S.
(TRW Space and Electronics Group United States)
Flannery, M. R.
(TRW Space and Electronics Group United States)
Kroening, K. V.
(TRW Space and Electronics Group United States)
Moses, S. L.
(TRW Space and Electronics Group United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 2004
Publication Information
Publication: New Concepts for Far-Infrared and Submillimeter Space Astronomy
Subject Category
Optics
Funding Number(s)
CONTRACT_GRANT: JPL-1217284
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available