NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
CHANDRA Detection of the AM CVn Binary ES Cet (KUV 01584-0939)We report on Chandra ACE observations of the ultracompact AM CVn binary ES Cet. This object has a 10.3 minute binary period and is the most compact of the confirmed AM CVn systems. We have, for the first time, unambiguously detected the X-ray counterpart to ES Cet. In a 20 ksec ACIS-S image a point-like X-ray source is found within 1 sec. of the catalogued optical position. The mean countrate in ACIS-S is 0.013/s, and there is no strong evidence for variability. We folded the X-ray data using the optical ephemeris of Warner & Woudt, but did not detect any significant modulation. If an approx. = 100% modulation similar to those seen in the ultracompact candidates V407 Vu1 and Rx J0806.3+1527 were present then we would have detected it. The upper limit (3(sigma)) to any modulation at the putative orbital period is approx. 40% (rms). We extract the first X-ray spectrum from ES Cet, and find that it is not well described by simple continuum models. We find suggestive evidence for discrete spectral components at approx. 470 and 890 eV, that can be modelled as gaussian emission lines. In comparison with recent X-ray detections of nitrogen and neon in another AM CVn system (GP Com), it appears possible that these features may represent emission lines from these same elements; however, deeper spectroscopy will be required to confirm this. Our best spectral model includes a black body continuum with kT = 0.8 keV along with the gaussian lines. The 0.2 - 5 keV X-ray flux was approx. 7 x 10(exp -14) ergs/sq cm s. The luminosity implied by this flux for any reasonable distance is much smaller than that expected for a mass accretion rate as high as m = 10(exp -8) solar mass/yr, suggesting that the bulk of the accretion luminosity is below 100 eV and not seen with Chandra. We discuss the implications of our results for the nature of ES Cet.
Document ID
20040095306
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Strohmayer, Tod E.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2004
Subject Category
Astrophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available