NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
SOHO Ultraviolet Coronagraph Spectrometer (UVCS) Mission Operations and Data AnalysisThe scientific goal of UVCS is to obtain detailed empirical descriptions of the extended solar corona as it evolves over the solar cycle and to use these descriptions to identify and understand the physical processes responsible for coronal heating, solar wind acceleration, coronal mass ejections (CMEs), and the phenomena that establish the plasma properties of the solar wind as measured by "in situ" solar wind instruments. This report covers the period from 15 February 2003 to 14 April 2004. During that time, UVCS observations have consisted of three types: 1) standard synoptic observations comprising, primarily, the H I Lyalpha line profile and the 0 VI 103.2 and 103.7 nm intensity over a range of heights from 1.5 to about 3.0 solar radii and covering 360 degrees about the Sun, 2) sit and stare observations for major flare watches, and 3) special observations designed by the UVCS Lead Observer of the Week for a specific scientific purpose. The special observations are often coordinated with those of other space-based and ground-based instruments and they often are part of SOHO joint observation programs and campaigns. Lead observers have included UVCS Co-Investigators, scientists from the solar physics community and several graduate and undergraduate level students. UVCS has continued to achieve its purpose of using powerful spectroscopic diagnostic techniques to obtain a much more detailed description of coronal structures and dynamic phenomena than existed before the SOHO mission. The new descriptions of coronal mass ejections (CMEs) and coronal structures from UVCS have inspired a large number of theoretical studies aimed at identifying the physical processes responsible for CMEs and solar wind acceleration in coronal holes and streamers. UVCS has proven to be a very stable instrument. Stellar observations have demonstrated its radiometric stability. UVCS has not required any flight software modifications and all mechanisms are operational. The UVCS 0 VI Channel with its redundant optical path for wavelengths near H I Lyalpha is capable of observing the entire UVCS wavelength range. The regions of the detector currently being used require different grating angles for direct OVI observations and redundant path H I Lyalpha observations, and so those can no longer be observed simultaneously. Since December 1998, the 0 VI Channel has been used for all UVCS observations. Although the H I Lyalpha Channel and detector are still operational, increases in the dark count up to about 5x10(exp 4) counts/sec/pixel and an increase in high voltage current to within a factor of two of the maximum used in the laboratory before flight led to the decision to not use that detector after 1998. The visible light channel functioned nominally during the reporting period. UVCS data, data analysis software, calibration files and the mission log are available from the SOHO archive and SAO. All UVCS data are now available within three months of the observations to scientists and the general public via the SOHO Data Archive and SAO. UVCS has resulted in 33 scientific papers in 2003. There were numerous presentations at scientific meetings. UVCS Education and Public Outreach activities involved nine members of the UVCS team. During the reporting period, there were over a dozen events directed at students and teachers, museum audiences, and public audiences via the mass media, internet and educational literature.
Document ID
20040111391
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Gurman, Joseph
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Kohl, John L.
(Smithsonian Astrophysical Observatory Cambridge, MA, United States)
Date Acquired
September 7, 2013
Publication Date
September 1, 2004
Subject Category
Solar Physics
Funding Number(s)
CONTRACT_GRANT: NAG5-12865
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available