NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
R and D work on the constrained vapor bubble system for a microgravity experimentWe are working with Project Scientists R. Balasubramanian and Sang Young Son, and a NASA Projects Team headed by Sue Motil at the Glenn Research Center on the design and development of an experimental system for use on the International Space Station during the year 2006. John Eustace is the coordinator for the flight experiment at Zin-Tech (previously Northrop-Grumman) for the design and development of the Constrained Vapor Bubble Heat Exchanger, CVBHX, cell which will fit into the Light Microscope Module, LMM. Good progress is being made. The CDR for the LMM being developed was held on December 10-1 1,2003. Experimental results obtained under microgravity conditions will be compared with those obtained at Rensselaer. Basic and applied research at Rensselaer continues on the experimental and theoretical details associated with passive phase change heat transfer processes controlled by interfacial forces in the CVBHX. The extensive results of our current research are presented in the 23 external publications listed below. Twenty-two external presentations have been given. Briefly, evaporation/condensation data from both vertical and horizontal CVBHX systems were obtained and analyzed for both polar (wetting) and apolar (partially wetting) fluids. The vertical system is axi-symmetric, but strongly effected by gravity. Whereas, the horizontal system is asymmetric, but weakly effected by gravity. Therefore, there will be significant differences in the operation of the cell in the earth s environment versus the operation under microgravity conditions. Due to its relative large size, the system s performance should be optimum under micro-gravity conditions, where the CVBHX should be a very effective passive heat exchanger. The CVBHX was found to be an ideal experimental setup in which to study the effects of interfacial phenomena on both the evaporation and drop-wise condensation processes. The optical technique (Image Analyzing Interferometry, IAI), which is based on the measurement and analysis of the reflectivity pattern of a thin film, was significantly improved. The accuracy of the IAI system is of critical importance to the success of the mission because it is used to measure the details of the pressure field in the liquid by measuring the film thickness profile. The accuracy was found to be excellent and various publications/presentations documenting these new results were written. Significant new results were also obtained for the effect of the oscillating contact line region on evaporation. Three doctoral students graduated under this grant. All three work in US industry, two for Intel. Another doctoral student is in his third year of study and will finish under an extension of the NASA grant: # NNC05GA27G.
Document ID
20050180490
Acquisition Source
Headquarters
Document Type
Contractor or Grantee Report
Authors
Wayner, P. C., Jr.
(Rensselaer Polytechnic Inst. Troy, NY, United States)
Plawsky, J. L.
(Rensselaer Polytechnic Inst. Troy, NY, United States)
Date Acquired
September 7, 2013
Publication Date
May 25, 2005
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
CONTRACT_GRANT: NAG3-2383
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available