NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?
Document ID
20050180788
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Wentworth, S. J.
(Lockheed Martin Corp. Houston, TX, United States)
Robinson, G. A.
(Baytech Houston, TX, United States)
McKay, D. S.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2005
Publication Information
Publication: Lunar and Planetary Science XXXVI, Part 21
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available