NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Temperature Superconducting/Ferroelectric, Tunable Thin-Film Microwave ComponentsAt the NASA Lewis Research Center, ferroelectric films such as SrTiO3 and Ba(sub x)Sr(sub 1-x)TiO3, are being used in conjunction with YBa(sub 2)Cu(sub 3)O(sub 7-delta) high-temperature superconducting thin films to fabricate tunable microwave components such as filters, phase shifters, and local oscillators. These structures capitalize on the variation of the dielectric constant of the ferroelectric film upon the application of a direct-current electric field, as well as on the low microwave losses of high-temperature superconductors relative to their conventional conductor counterparts. For example, the surface resistance for a YBa(sub 2)Cu(sub 3)O(sub 7-delta) thin film at 10 GHz and 77 K is more than two orders of magnitude lower than that of copper or gold at the same temperature and frequency. SrTiO3 and Ba(sub x)Sr(sub 1-x)TiO3 films are used because their crystal structure and lattice parameters are similar to those of YBa(sub 2)Cu(sub 3)O(sub 7-delta), thus enabling the growth of highly textured YBa(sub 2)Cu(sub 3)O(sub 7-delta) films with high critical current densities (i.e., greater than 1 MA/sq cm) on the underlying ferroelectric film, or alternatively, of highly textured ferroelectric film on the underlying YBa(sub 2)Cu(sub 3)O(sub 7-delta) film.
Document ID
20050180825
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Miranda, Felix A.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 1998
Publication Information
Publication: Research and Technology 1997
Subject Category
Electronics And Electrical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available