NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal characteristics of Lithium-ion batteriesLithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the
Document ID
20050186613
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Hauser, Dan
(Ohio Univ. OH, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium II
Subject Category
Electronics And Electrical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available