NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Evaporative Cooling in a Holographic Atom TrapWe present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.
Document ID
20050186685
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Newell, Raymond
(Wisconsin Univ. Madison, WI, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available